
Journal of Computational Physics 195 (2004) 594–601

www.elsevier.com/locate/jcp
A high-wavenumber viscosity for high-resolution
numerical methods

Andrew W. Cook *, William H. Cabot

Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551, USA

Received 4 March 2003; received in revised form 5 August 2003; accepted 9 October 2003
Abstract

A spectral-like viscosity is proposed for centered differencing schemes to help stabilize numerical solutions and

reduce oscillations near discontinuities. Errors introduced by the added dissipation can be made arbitrarily small by

adjusting the power of the derivative in the viscosity term. The high-wavenumber viscosity is combined with a 10th-

order compact scheme to produce an accurate and efficient shock-capturing method. The new scheme compares

favorably with other shock-capturing algorithms.

� 2003 Elsevier Inc. All rights reserved.
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For flows with a wide range of scales, global differencing schemes, e.g., spectral and compact methods,

have far greater resolving power than local schemes, e.g., explicit finite-difference methods [1–3]. The desire

for accurate simulations of flows involving both discontinuities and a broad spectrum, e.g., shock-turbulence

interactions, has driven recent work in extending global schemes to accommodate shocks. Deng et al. [4,5]

introduced compact stencils and interpolants into the ENO/WENO framework in an effort to improve the

modified wavenumber compared to explicit upwinding. Yee et al. [6] and Gaitonde and Visbal [7] employed
characteristic-based and Pad�e-type filters to smooth the solution near shocks and stabilize their calculations.

In this note, we explore the merits of adding a wavenumber-weighted viscosity to control Gibbs oscillations

near shocks. The idea of adding artificial dissipation terms to central schemes to capture discontinuities is an

old one, originating with von Neumann and Richtmyer [8] half a century ago. Jameson et al. [9] added 2nd-

and 4th-order dissipation terms to regularize numerical solutions to the Euler equations. The historical

drawback of the artificial viscosity approach is that the added terms are frequently too dissipative in certain

regions of the flow. To minimize undesirable dissipation Tadmor [10] developed a spectral vanishing vis-

cosity (SVV) approach, which has been demonstrated by Karamanos and Karniadakis [11] to provide good
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control of the small scales in large-eddy simulations of high Reynolds number flows. Here we explore an idea

for simulating compressible flows, similar to the SVV approach, but with three differences: first, the dissi-

pation is applied in physical space; second, the viscosity kernel uses information directly from the resolved
scales; and third, the added term takes the form of the Navier–Stokes viscous stress, such that the method

converges to a DNS with sufficient refinement.

In one dimension, the Euler equations for inviscid flow of an ideal gas are:

oq
ot

þ oqu
ox

¼ 0; ð1Þ
oqu
ot

þ o

ox
ðquuþ pÞ ¼ 0; ð2Þ
oqE
ot

þ o

ox
½ðqE þ pÞu� ¼ 0; ð3Þ
p ¼ ðc� 1Þqe; ð4Þ

where q is density, u is velocity, p is pressure, E ¼ ðeþ uu=2Þ is total energy, e is internal energy and c is the
ratio of specific heats. This system can be regularized by replacing (2) and (3) with

oqu
ot

þ o

ox
ðquuþ p � sÞ ¼ 0 ð5Þ

and

oqE
ot

þ o

ox
½ðqE þ p � sÞu� ¼ 0; ð6Þ

where

s ¼ l
ou
ox

ð7Þ

is a viscous stress and l is a grid-dependent artificial viscosity. A ‘‘high resolution’’ numerical method is a

scheme in which s only damps wavenumbers close to the Nyquist wavenumber, p=Dx. This can be ac-

complished by making l / oru=oxr, where r is a user-specified integer, thus imparting to l a high wave-

number ðkrÞ bias. This type of artificial selective damping has been successfully employed in acoustics

computations by Tam et al. [12], and by Barone and Lele [13] who set s / oru=oxr. In our formulation, we

base l, rather than s, on the r-derivative in order to make (5) assume Navier–Stokes form.

Now consider a periodic isentropic flow, where (1)–(3) can each be cast in the form

o/
ot

þ h
o/
ox

¼ 0; ð8Þ

where h is a wave speed and / is a Riemann invariant [14]. For the purpose of analysis, h will be taken as

constant. The spatially-discrete analogue of (8) is

o/j

ot
þ hD � /j ¼ 0; ð9Þ

where j is a grid index and D� denotes a discrete operator approximating o=ox. Fourier transforms (F) of

(8) and (9) can be written as
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o/ðkÞ
ot

þ hðik=DxÞ/ðkÞ ¼ 0 ð10Þ

and

o/k

ot
þ hðix=DxÞ/k ¼ 0; ð11Þ

respectively, where /ðkÞ ¼ Ff/ðxÞg, /k ¼ Ff/jg, k is a nondimensional wavenumber (ranging from 0 to

p) and x ¼ xðkÞ is a nondimensional modified wavenumber. The modified wavenumber for spatial dis-

cretization of the form

b/0
j�2 þ a/0

j�1 þ /0
j þ a/0

jþ1 þ b/0
jþ2 ¼ c

/jþ3 � /j�3

6Dx
þ b

/jþ2 � /j�2

4Dx
þ a

/jþ1 � /j�1

2Dx
ð12Þ

is [2,3]

xðkÞ ¼ a sinðkÞ þ ðb=2Þ sinð2kÞ þ ðc=3Þ sinð3kÞ
1þ 2a cosðkÞ þ 2b cosð2kÞ : ð13Þ

In this note, we consider a 4th-order explicit (E4) scheme ða ¼ 0; b ¼ 0; a ¼ 4=3; b ¼ �1=3; c ¼ 0Þ, a 4th-
order compact (C4) scheme ða ¼ 1=4; b ¼ 0; a ¼ 3=2; b ¼ 0; c ¼ 0Þ, a 10th-order compact (C10) scheme

ða ¼ 1=2; b ¼ 1=20; a ¼ 17=12; b ¼ 101=150; c ¼ 1=100Þ, and a spectral (S) Fourier transform scheme

for which x ¼ k.
The spatial discretization is combined with a five-step 4th-order Runge–Kutta (RK4) method derived by

Kennedy et al. [15]. For differential equations of the form _/ ¼ f , the scheme is

qg ¼ Dtf g�1 þ Agqg�1; /g ¼ /g�1 þ Bgqg; g ¼ 1; . . . ; 5; ð14Þ

where Dt is the time step, g is the RK4 subcycle, and Ag and Bg are: A1 ¼ 0; A2 ¼�6234157559845=
12983515589748; A3 ¼ �6194124222391=4410992767914; A4 ¼ �31623096876824=15682348800105; A5 ¼
�12251185447671=11596622555746; B1 ¼ 494393426753=4806282396855; B2 ¼ 4047970641027=54639245
06627; B3 ¼ 9795748752853=13190207949281; B4 ¼ 4009051133189=8539092990294; B5 ¼ 13485334375

43=7166442652324. This particular RK4 scheme was chosen for its broad stability properties for both

convective and viscous terms. The amplification factor is

AN ¼ /g¼5
k

/g¼0
k

¼ 1

�
� w2

x

2
þ w4

x

24

�
� i wx

�
� w3

x

6
þ w5

x

200

�
; ð15Þ

where wx � xH and H � hDt=Dx is the CFL number. Maximum stable CFL numbers ðjANj ¼ 1Þ for the
E4-RK4, C4-RK4, C10-RK4 and S-RK4 schemes are 2.435, 1.929, 1.437 and 1.063, respectively.

The exact solution to (10) at t ¼ nDt is /nðkÞ ¼ U expð�iknHÞ with amplification factor

AE � /nþ1ðkÞ
/nðkÞ ¼ expð�iwkÞ ¼ 1

�
� w2

k

2
þ w4

k

24
� w6

k

720
þ Oðw8

kÞ
�
� i wk

�
� w3

k

6
þ w5

k

120
� Oðw7

kÞ
�
; ð16Þ

where wk � kH. The total error (spatial plus temporal) for the centered-space Runge–Kutta schemes is

EN ¼ AN � AE. The real part of EN is the diffusive error and the imaginary part is the dispersive error. The

errors increase at higher wavenumbers and higher CFL numbers. Therefore, the optimum CFL number

depends on the spectral content of the flow, and hence will vary depending on the problem.

To see how a wavenumber-weighted viscosity affects the overall error, add a term of the form
mkr/ðkÞ=Dx2 to the right-hand side of Eq. (10). The amplification factor for the exact solution with artificial
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viscosity is AV ¼ expðrkr � ikHÞ, where m is a kinematic viscosity parameter and r � mDt=Dx2. The error

introduced by the spectral-like viscosity is

EV ¼ AV � AE ¼ expðrkr � ikHÞ � expð�ikHÞ ¼ rkr
�

þ O k2r
� ��

� i rkrþ1
�

þ O k2rþ1
� ��

: ð17Þ

For small k, we can choose r sufficiently large that EV < EN; i.e., we can ensure that the error introduced by

the artificial viscosity is less than the space–time discretization errors already present.

The particular form of artificial viscosity employed in our simulations is

l ¼ ClqðDxÞrþ1 oru
oxr

����
����; ð18Þ

where j j denotes a Gaussian filter applied to the absolute value to ensure that l is smooth and positive. It is

desirable to choose r as large as possible to minimize the error caused by introducing s into the equations.

However, larger values of r require larger stencils to accurately represent the r-derivative. Compact (Pad�e)
schemes provide a means whereby high derivatives can be computed with reasonably small stencils. For the

current simulations we chose r ¼ 8 and used the 6th-order approximation (which was found to be the

minimum order necessary to achieve the desired results),

29uVIIIj þ 14 uVIIIjþ1

�
þ uVIIIj�1

	
þ ð3=2Þ uVIIIjþ2

�
þ uVIIIj�2

	
¼ ½4200uj � 3360ðujþ1 þ uj�1Þ þ 1680ðujþ2 þ uj�2Þ
� 480ðujþ3 þ uj�3Þ þ 60ðujþ4 þ uj�4Þ�=ðDxÞ8; ð19Þ

where uVIIIj approximates o8u=ox8 at the jth grid point. The filter is then applied as

uVIIIj

�� �� ¼ 3565

10368
uVIIIj

��� ���þ 3091

12960
uVIIIjþ1

��� ����
þ uVIIIj�1

��� ���	þ 1997

25920
uVIIIjþ2

��� ����
þ uVIIIj�2

��� ���	
þ 149

12960
uVIIIjþ3

��� ����
þ uVIIIj�3

��� ���	þ 107

103680
uVIIIjþ4

��� ����
þ uVIIIj�4

��� ���	; ð20Þ

which is derived by matching the transfer function to a Gaussian of width 4Dx. For the calculations pre-

sented here, Cl ¼ 0:1. The C10-RK4 scheme with artificial terms is denoted C10V-RK4.

Our test problem is a compressible breaking wave with initial conditions

q=q0 ¼ 1þ � sinð2px=kÞ; ð21Þ

p=p0 ¼ ðq=q0Þ
c
; ð22Þ

cs=cs0 ¼ ðq=q0Þ
ðc�1Þ=2

; ð23Þ

u ¼ 2ðcs0 � csÞ=ðc� 1Þ; ð24Þ

where cs is the sound speed, q0 ¼ 10�3, p0 ¼ 106, c ¼ 5=3 and � ¼ 0:1. The wavelength, k, is set to NDx, where
N is the number of grid points per period. For this set of initial conditions, two of the three characteristics are

initially constant, with the third satisfying a Burgers-like equation. The exact solution consists of the initial

profiles being advected with velocity u� cs, hence points on the profiles move from x to n ¼ xþ ðu� csÞt. A
discontinuity begins to form when the solution attempts to become multivalued; this happens for a given x at

t ¼ k
ðcþ 1Þp�cs0

½1þ � sinð2px=kÞ�ð3�cÞ=2

cosð2px=kÞ ; ð25Þ



598 A.W. Cook, W.H. Cabot / Journal of Computational Physics 195 (2004) 594–601
which has the minimum

sinð2pxb=kÞ ¼ � 1

ðc� 1Þ�þ
1

ðc� 1Þ2�2

 
� 3� c
c� 1

!1=2

: ð26Þ

For � � 1, sinð2pxb=kÞ � �ð3� cÞ�=2 and tb ¼ ½k=ðcþ 1Þp�cs0�½1þOð�3Þ�, where tb denotes the time when
the wave first begins to break. The discontinuity therefore forms very near the point initially corresponding

to x ¼ 0 and grows to include more points on either side. The peaks of the initial sinusoidal profile at

xp ¼ �k=4 reach this point at a later time given by

tp �
ðc� 1Þðxb � xpÞ
ðcþ 1Þðcs;b � cs;pÞ

� k=2ðcþ 1Þ�cs0 � ðp=2Þtb: ð27Þ

At this time, the discontinuity reaches its greatest amplitude, after which it slowly decreases [14]. The

analytical solution to this breaking wave is only valid for t6 tb because, unlike pure Burgers flow, the shock
processes fluid; hence, the entropy ceases to be constant for t > tb.

Convergence rates for the centered RK4 schemes at t ¼ 3tb=4, when the flow is still smooth, are plotted

in Fig. 1. At high CFL numbers, time-stepping errors determine the rates of convergence; however, the

actual errors are much lower for the higher-resolution spatial discretizations. For instance, errors for the
C10-RK4 scheme are more than an order of magnitude lower than those of the E4-RK4 scheme, even

though both methods are formally 4th-order accurate at CFL¼ 1. At low CFL numbers, spatial discret-

ization errors determine the rates of convergence; e.g., the C10-RK4 scheme exhibits 10th-order conver-

gence at CFL¼ 1/16. When artificial viscosity is added to this scheme, the convergence rate is limited by the

r parameter, which in this case gives 8th-order convergence. Note that 8th-order convergence is obtained

even though the approximation to the 8th derivative is only 6th order.
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Fig. 1. Convergence rates for the centered RK4 schemes at t ¼ 3tb=4: C10-RK4 at CFL¼ 1/16 (heavy solid), C10V-RK4 at CFL¼ 1/

16 (medium solid), C10-RK4 at CFL¼ 1 (thin solid) nearly coincident with S-RK4 at CFL¼ 1 (dot-dashed), C4-RK4 at CFL¼ 1 (long

dashed), E4-RK4 at CFL¼ 1 (short dashed). Fiducial lines corresponding to 4th-, 8th-, and 10th-order convergence are also plotted for

reference.
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Next, we compare the accuracy of the C10V-RK4 method against two standard shock-capturing

methods, which have been published extensively in the literature: Jiang and Shu�s 5th-order Weighted

Essentially Non-Oscillatory method with 3rd-order TVD Runge–Kutta time-stepping (WENO5-RK3) [16],
and Bell and Colella�s 2nd-order Piecewise Linear MUSCL Direct Eulerian (PLMDE) method [17,18].

Errors for the C10V-RK4, WENO5-RK3 and PLMDE methods are plotted versus time in Fig. 2 for

CFL¼ 1 and N=k ¼ 128. During the smooth phase, the error for the C10V-RK4 scheme is a couple orders

of magnitude lower than the WENO5-RK3 error, which, in turn, is about an order of magnitude lower

than the PLMDE error. However, as the discontinuity forms, the errors for all three schemes become

similar, and the rates of convergence all become first order. A scale-dependent measure of error is given in

Fig. 3, which displays the density energy spectrum for the shock-capturing schemes at t ¼ 3tb=4 with

N=k ¼ 64. The spectra provide a direct measure of the resolving power of each scheme. Two facts are
evident from the plot; first, the C10-RK4 and C10V-RK4 methods have nearly identical resolution

properties, which means that the high-wavenumber viscosity has negligible impact on the solution in

smooth regions; and second, the C10 schemes give excellent representation for about half the wavenumbers,

whereas the WENO5 and PLMDE schemes match less than a quarter of the wavenumbers. This is a

consequence of the fact that the C10 schemes are purely centered, whereas the WENO5 and PLMDE

methods are upwinded. The modified wavenumber for centered schemes is real (as is the true wavenumber),

whereas the modified wavenumber for non-centered schemes is complex.

The efficiency of the schemes is quantified in Table 1, which displays the CPU time required for each
scheme to reach t=tb ¼ 3=4 (with CFL¼ 1), at the resolution necessary to meet the indicated L2 error. By

this measure, the centered schemes are vastly more efficient than the upwinded methods because they are

able to satisfy the error tolerance with much fewer grid points.

The picture changes, however, when the flow becomes discontinuous. Fig. 4 displays the density solution

for the C10V-RK4, WENO5-RK3 and PLMDE methods at t ¼ tp, the time at which the discontinuity

reaches its greatest amplitude. For this time, the �exact� solution is taken as the PLMDE result with

N=k¼ 20,000. For all three schemes, the shock is spread over about four grid points and oscillations are

negligible. Results for the C10-RK4 scheme (without artificial viscosity) exhibit strong Gibbs oscillations
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Fig. 3. Density spectrum at t ¼ 3tb=4 with N=k ¼ 64: exact solution (thick solid), C10-RK4 (medium solid), C10V-RK4 (thin solid),

WENO5-RK3 (dashed line) and PLMDE (dotted). All numerical solutions are computed at CFL¼ 1.

Table 1

CPU times and resolutions required to reach t=tb ¼ 3=4, at CFL¼ 1, to within the specified L2 error

Scheme N=k Time steps CPU time (s) L2 error

E4-RK4 995 1004 1.467 2.03� 10�8

C4-RK4 715 722 0.777 2.03� 10�8

C10-RK4 512 516 0.583 2.03� 10�8

S-RK4 512 516 0.874 2.03� 10�8

C10V-RK4 512 516 1.40 2.03� 10�8

WENO5-RK3 2110 2157 76.0 2.03� 10�8

PLMDE 9900 9990 263 2.03� 10�8
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Fig. 4. Density computed with the PLMDE (dotted), WENO5-RK3 (dashed) and C10V-RK4 (thin solid) schemes at t ¼ tp with

N=k ¼ 64 using CFL¼ 1. The thick solid line is the PLMDE solution with N=k¼ 20,000.
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on both sides of the shock. The CPU times required for the C10V-RK4, WENO5-RK3 and PLMDE

schemes to reach t ¼ tp with N=k ¼ 512 and CFL¼ 1, were 2.91, 9.76 and 1.424 s, respectively.

In summary, we have proposed a spectral-like viscosity which can be added to any numerical method to
reduce oscillations near discontinuities. We have demonstrated the convergence rates for smooth flow to be

proportional to the power of the derivative in the artificial viscosity; hence, the error introduced by the

added dissipation can be made arbitrarily small. We combined the high-wavenumber viscosity with the

most efficient of the centered schemes tested to produce an accurate and efficient shock-capturing method

(C10V-RK4). The new C10V-RK4 scheme was evaluated against standard shock-capturing schemes

(WENO5-RK3 and PLMDE). For the smooth flow phase, the C10V-RK4 scheme proved much more

efficient than either the WENO5-RK3 scheme or the PLMDE method, with differences increasing for lower

error tolerances. For the discontinuous phase of the flow, errors for the shock-capturing schemes were
similar, and C10V-RK4 proved several times more efficient than WENO5-RK3 and about half as efficient

as PLMDE.
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